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Abstract. Dusty image enhancement has been attracted wide attention due to its practicability 

in autonomous and monitoring systems. However, little methods focus on advanced learning-

based dedusting models due to the difficulty of collecting paired training data. To bridge this 

problem, this paper proposes a new large-scale benchmark dataset synthetized by the proposed 

synthetic method, named Realistic Single Image Dust Removal (RSIDR), for image dedusting 

task, which consisting both synthetic and corresponding real-world dusty images. In addition, 

we present a comprehensive study and evaluation for the state-of-the-art image enhancement 

methods on image dedusting task. We further provide a large variety of criteria metrics for image 

evaluation, ranging from full-reference Image Quality Assessment (IQA) to no-reference IQA. 

Experiments on RSIDR reveal the limitations and advantages of the existing image 

enhancement algorithms, and suggest promising research directions. 
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1. Introduction 

1.1.  Problem Description: Single Image Dedusting 

Images captured from outdoor scenes often suffer from low brightness, poor visibility and color shift due to the 

dust in the air, which badly affect the scene visibility for people, and the performance of the traditional object 

recognition methods [1, 2, 3]. Recently, image dehazing task has attracted wide attention [4, 5, 6], however, few 

researchers pay attention to image dedusting as equal important image processing task. Different from other 

aerosols (e.g., haze, mist and fog), the existence of dust adds yellowing, nonlinear, depth-dependent noise to the 

outdoor images, and thus makes the image dust removal (a.k.a. dedusting) a highly difficult image enhancement 

and restoration problem [7, 8, 9]. Moreover, the presence of dust also affects the performance of many computer 

vision algorithms (e.g., image segmentation [10, 11, 12, 3], signal processing [13, 14], and image Generation [15]). 

Therefore, dedusting has becoming an increasingly worthy image pre-processing for both pattern recognition and 

image segmentation, whose research will immediately benefit many application [16, 17, 18]. 

Early researches considered the image dehazing is an important image restoration task, and made a huge 

contribution on this ffeld. Atmospheric scattering model can be used to describe the reason for degradation of 
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imaging results captured from detection system, and has been used in the classical description for natural scene 

generation: 

𝐼(𝑥) = 𝐽(𝑥)𝑡(𝑥) + 𝐴(1 − 𝑡(𝑥))                             (1) 

where 𝐼(𝑥) is the captured images, 𝐽(𝑥) is the recovered images. Eq. (1) has two critical parameters: A is the global 

atmospheric light, and 𝑡(𝑥) denotes the transmission matrix, which can be defined as: 

𝑡(𝑥) = 𝑒−𝛽𝑑(𝑥)                                 (2) 

where 𝑑(𝑥) is the depth between the object and camera, “/beta” is the scattering coefficient. Most state-of-the-

art single image dehazing methods exploit the physical model and estimate the key parameter A and 𝑡(𝑥). 

Need to noted, Eq. (1) and Eq. (2) can also be the theoretical basis of the dusty image synthesis in this paper. 

1.2.  Dusty Image Synthetic Method 

Similar with fog, the influences degree of images damaged by dust is also depend on the depth of scene. However, 

there have a huge different in physical property between dust and other aerosols (e.g., fog, mist and haze). 

Therefore, the relationship of depth maps between clear images and dusty images should be complied statistics by 

a rational method. 

Dust-code: Dusty images and the corresponding clear images are essential component to quantitative compile 

statistic the degree of damage from dust in depth-depended. Collecting the paired images is difficult in any ill-

posed image processing tasks. Therefore, recovering the clear images from real-world dusty images is a feasible 

method to collect paired images. DRHNet [5] is an excellent CNN-based image enhancement algorithm, which 

achieves the state-of-the-art performance both in image dehazing and deraining task. The generalization ability of 

DRHNet has been prove by the large amount of experiments both in synthetic and real-world datasets. Therefore, 

we preliminarily conduct image dedusting by DRHNet, and then using Photoshop to refine the dedusted results. 

Those operation can obtain the paired images in dusty and clear condition. 

According to Eq. (1) and Eq. (2), depth information is the key to recover the clear scenes from the bad weather 

images and vice versa. Monocular depth estimation algorithm can assess the depth information just by single 

image. As far as we know, the monodepth2 [19] has achieve the state-of-the-art performance in monocular depth 

estimation of dusty and refined clear images, which is the key to compile statistics the relationship of the depth 

information between dusty and clear images. The relationship between dusty and its corresponding clear images 

can be named as dust-code. To estimate the dust code accurately, we collected twenty real-world dusty images 

from the Internet and previous papers. 

Dust-code can be understood as the influence of dust working on depth estimation result obtained by monocular 

depth estimation algorithm. Figure 1 gives the flowchart of the dust code's estimation. After obtaining the dust-

code, we can obtain a synthetic dusty image directly by following expression: 

𝐼(𝑥) = 𝐽(𝑥)(1 − 𝑝(𝑥)𝑑(𝑥)) + 𝐶(𝑝(𝑥)𝑑(𝑥))                             (3) 

where, 𝐼(𝑥)  is the synthesized dusty images, 𝐽(𝑥)  is the captured clear images, 𝑝(𝑥)  denotes the proposed 

dust-code, and 𝑑(𝑥) is the image depth map evaluated by Monodepth2 [19]. 
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1.3. Our contribution 

Despite the practicability of single image dedusting algorithm, there still have following hurdles to the further 

development of this ffeld: ffrst, there is a lack of largescale public dataset. Second, current related image processing 

algorithms just focus on image dehazing and deraining, which seriously affected the advance of image dedusting. 

Third, current IQA for evaluating image enhancement algorithms are mostly just full-reference metrics, which is 

insufffcient for evaluating either human perception quality or machine vision effectiveness. 

 

Figure 1. Synthetic method of dusty images. 

 

Figure 1. Synthetic method of dusty images. The flows of synthetic method form left to right. Given a real-

world dusty image to pretrained CNN for preliminary dedusting. The refined operations by Photoshop on 

preliminary dedusted images. Monodepth2 was be used to estimate the image depth information of the original 

dusty image and the refined images, then dust-code can be obtained. We can synthesize the dusty images from a 

clear image by the obtained dust-code. 

The motivation of this paper is to directly overcome above problems, and makes the following three-fold 

contributions: 

• We propose a novel and reasonable method to synthesize dusty images by giving clear images, which will 

bloom he development of image dedusting field. The proposed method fully considers the characteristics of the 

real dust images, including color, depth, brightness and other physical characteristics. Part of the synthetic dusty 

images are shown in Figure 1. 

• We introduce a new single image dust removal dataset, called the Realistic single image dust removal (RSIDR). 

As far as we know, this is the first public available image dedusting dataset. The proposed dataset includes 9381 

synthetic street scene dusty images, 4347 synthetic indoor dusty images, 20 hybrid synthetic dusty images, and 10 

real-world dusty images. Among them, the published dataset includes training set, verification set and test set, 

respectively. A large number of datasets can ensure that our published dataset can meet the learning-based image 
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dedusting algorithms. 

• We conduct an extensive range of experiments to conduct quantitative and qualitative comparison on six state-

of-the-art image enhancement algorithms by running on RSIDR dataset. Moreover, we evaluate and analyze the 

advantage and limitation of each compared algorithms, and elaborate rich insights. The presented summarize and 

statement can point out the right direction to researchers who engaged in image dedusting research. 

An overview of RSIDR could be found in Table 1. The RSIDR is the first and only systematic evaluation, that 

includes a number of image enhancement algorithms with multiple criteria on the proposed large-scale dataset. 

The RSIDR dataset is made publicly available for research purposes, and we plan to periodically update our own 

benchmarking results for noticeable new dedusting algorithms. We also welcome authors to report new results on 

RSIDR. 

2. The Proposed Large-Scale Dataset: RSIDR 

The proposed Realistic Single Image Dust Removal (RSIDR) is the first large-scale dataset for fairly evaluating 

the performance in image dedusting algorithms. A prominent feature of RISDR is the adequate experiments and 

the diversity of its evaluation criterion, ranging from traditional full-reference metrics, no-reference metrics, and 

even task driven evaluation. The performance of the state-of-the-art image enhancement algorithms in image 

dedusting will be discussed later in this paper. 

 

 

Figure 2. Example images from the four sets in RSIDR. 
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Table 1. Structure of RSIDR. 

RSIDR(Cityscapes) 

Subest Number of Images real/synthetic Indoor/outdoor 

Street Training Set(STS) 8580 synthetic outdoor 

Street Validation set(SVS) 801 synthetic outdoor 

RSIDR(NYU) 

Subest Number of Images real/synthetic Indoor/outdoor 

Indoor Training Set(ITS) 3000 synthetic indoor 

Indoor Validation set(IVS) 1347 synthetic indoor 

RSIDR(Hybrid) 

Subest Number of Images real/synthetic Indoor/outdoor 

Hybrid Training Set(HTS) 20 synthetic outdoor 

RSIDR(Real-world images) 

Subest Number of Images real/synthetic Indoor/outdoor 

Real-world images 10 real outdoor 

 

2.1.  Related Datasets 

With the development of computer vision, more image datasets have been presented to developed to various pattern 

recognition task. For comprehensive consideration, both outdoor and indoor scenes need to be considered. Urban 

street scenes and indoor scenes are important of image dehazing, which have been used to synthesize outdoor and 

indoor hazy images. Therefore, there scenes are also important in image dedusting task. 

(1) Cityscapes: Urban street scenes have attracted wide attention due to its practicability. The visual complexity 

of such scenes poses a serious challenge to the state-of-the-art computer vision algorithms. Cityscapes dataset [20], 

which can be used for urban streetscape understanding and automatic driving. Cityscapes consists of street scene 

video clips collected from 50 cities, whose training set, verification set and test set are including 2975, 500 and 

1525 video clips respectively. Each video clip has 30 frames, and only the 20th frame is labeled at the pixel level 

for sematic segmentation. Franke et al. improved the basic Cityscapes dataset as authoritative databases in semantic 

segmentation, instance-wise and dense pixel annotations. The Cityscapes synthesis researchers adopt it to conduct 

other important computer vision tasks. 

(2) NYU: Nathan Silberman et al. presented a dataset, which contains 1449 RGBD images to advance the 3D 

interpretation related researches. The main interest of Nathan et al. is to better understand how 3D cues can best 

inform a structured 3D interpretation. Therefore, Nathan Silberman et al. Offered a new dataset of 1449 RGBD 

images, capturing 464 diverse indoor scenes, Nathan Silberman et al. presented NYU depth dataset for 3D scene 

analysis, depth estimation and other computer vision tasks. Recently, some researchers adopted NYU-depth dataset 

for image dehazing. 

(3) Dataset overview: Through the observation and statistics of a certain number of real dusty images captured 

by monitoring or cinema, combined with the characteristics of the images taken in the dust weather, we get three 

most common dusty colors, and the colors of dust storm as shown in Figure 3. Moreover, we set random number 
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between [0.8, 1.2] to adjust brightness randomly. 

The RSIDR training set contains 13,728 synthetic dusty images, generated using 4,576 clear images from 

existing outdoor dataset Cityscape [20] and indoor depth dataset NYU [21]. We synthesize 3 dusty images for each 

clear image. An optional split of 11,580 for training and 2,148 for validation is provided. More specifically, 8,580 

synthetic dusty images in the training set are synthesized by Cityscapes, and 3,000 synthetic dusty images are 

synthesized by NYU dataset. In validation set, 801 images are synthesized from Cityscapes, and 1,347 indoor 

dusty images are synthesized from NYU dataset. An overview of RSIDR could be found in Table 1. 

2.2. Evaluation Strategies 

It is inevitable to mix some interference factors to images (e. g. noise, blur, data loss) in the processing of image 

acquisition and display, which will cause the degradation of image quality (degradation, distortion). The quality 

of image has a direct impact on people’s subjective feelings and information acquisition. Recently, the question of 

image quality evaluation has been widely. Image quality evaluation can be divided into subjective evaluation 

method and objective evaluation method. The subjective evaluation is conducted by the observer. Generally, the 

subjective score or the different mean opinion score are used. However, subjective evaluation work is time-

consuming and inconvenient, so little researchers have studied it carefully. Objective evaluation method is to 

calculate the image quality index by computer according to a certain algorithm. According to whether reference 

image is needed in evaluation, it can be divided into three kinds of evaluation methods: full-reference, reduced-

reference and no-reference. In the evaluation of distorted image, the full reference methods need to provide an 

undistorted original image, which is often difficult to get in practical application. The reduced-reference methods 

do not need to compare the distorted image with the original image, but only need to compare part features of the 

distorted image with the original image. No-reference image quality evaluation methods according to the self-

characteristics of the distorted image without reference image. Although no reference method has the most 

practical value, it is more difficult to evaluate the quality of the image because there is not reference image, and 

the contents of the image are different. Different kinds of image quality objective evaluation strategies are shown 

in the Figure 8. 

(1) Full-reference strategies: Peak Signal to Noise Ratio (PSNR) is a classical full-reference image evaluation 

metric to evaluate the performance of the image enhancement algorithms, which can be described as follow: 

𝑃𝑆𝑁𝑅 = 10𝑙𝑜𝑔10
(2𝑛−1)2

𝑀𝑆𝐸
                                 (4) 

(2) No-reference strategies: Despite the popular of the full reference PSNR/SSIM metrics for evaluation 

dedusting algorithms, they are inherently limited due to the unavailability of clean ground truth images in practice, 

as well as they often poor alignment with human perception quality. Therefore, we refer to two no-reference IQA 

metrics: spatial-spectral entropy-based quality (SSEQ) [22], and Image Entropy, to complement the shortness of 

full-reference strategies. The score of SSEQ used in are range from 0 to 100, and the smaller the score the better 

the image quality. However, in order to make correlation consistent to full-reference metrics, we reverse the SSEQ 

score in this paper. For image entropy metric, the higher image entropy value means more details and changes in 

the image brightness. On the contrary, the image with lower entropy value has less image color details. 

We will apply both full-reference (PSNR and SSIM) and no-reference (SSEQ and Image Entropy) evaluation 
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metrices to evaluate the dedusted results on synthetic images, and use SSEQ and Image Entropy on real-world 

images. We also will further compare those objective measures with subjective ratings. 

 

 

Figure 3. The different colors obtained by the statistics of different real-world dusty images are used to 

synthesize different dusty images. 

 

 

Figure 4. Three kinds of image quality objective evaluation methods. 

3. Experimental Results 

Based on the rich resources provided by RSIDR, we evaluate 6 representative state-of-the-art related image 
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enhancement algorithms: Double Deep-Image-Priors (DoubleDIP) [23], Allin-One Dehazing Network (AOD-Net) 

[24], Lightweight Pyramid Networks (LPNet) [25], Residual Guide Network (RGNet) [26], Feature Fusion 

Attention Network (FFANet) [27], and DedustNet proposed by our other work. DoubleDIP is a latest 

comprehensive computer vision method, which can be used to tackle a variety of seemingly unrelated tasks, such 

as image segmentation, layer separation image dehazing. AODNet is a typical CNN-based image dehazing method. 

LPNet and RGNet are the state-of-the-art image deraining methods. FFANet is the excellent learning-based model, 

which is based on feature fusion attention module. And DedustNet is designed for single image dedusting. In 

particular, the training epochs of all above data-driven methods are set to 200, and the size of training images are 

resized to 256*512 in the specify training process. Due to these methods are similar to image dedusting methods 

to some extent, they can be used to perform image dedusting task. The synthetic datasets and the model trained by 

these datasets all be present in https://github.com/jiayanHuang/RSIDR. 

3.1.  Results on Synthetic Datasets 

In order to obtain different synthetic dusty images, we use three different dusty color maps as input for the proposed 

dusty images synthetic method, where the color maps are approximately hypothesized according to common dusty 

scenes in real-world. Therefore, we got the corresponding three different synthetic dusty datasets based on 

Cityscapes and NYU respectively, and produce three models trained by different synthetic dusty images generated 

by three different colors. Furthermore, we will mix the tree different synthetic dusty image datasets as training of 

networks to obtain a mix color model suitable for different real-world dusty scenes, and then use it to test on HTS 

and real-world images. For the evaluation of dedusting results, the average peak signal-tonoise ratio (PSNR) and 

structural similarity (SSIM) between the recovered images and the ground truths are used as the quantitative 

evaluation indexes. We first compare the dedusted results on STS and ITS using two full-reference (PSNR, SSIM) 

and two no-reference metric (SSEQ, Image Entropy). Table. III displays the detailed scores of each algorithm in 

terms of each metric. We can observe from Table. III that the DedustNet generates dedusted results with highest 

PSNR, and SSIM values than those of other algorithms results on both STS and ITS. The average PSNR and SSIM 

values of the DedustNet on STS dedusted results are 21.84 and 0.2916 higher than those of input dusty images, 

and on ITS dedusted results are 18.39 and 0.1808 higher than those of input dusty images, which demonstrates 

that the DedustNet is able to remove dust storm and generates high-quality images. FFANet [27] obtains the 

suboptimal PSNR value and third SSIM value on STS. AODNet [24] and RGNet [26] achieve the similar PSNR 

and SSIM values on STS. However, for ITS, AODNet gets a lower PSNR value, and RGNet obtains suboptimal 

PSNR and SSIM values. 

When it comes to no-reference metrics, the results become less consistent. DedustNet still maintains competitive 

performance by obtaining the best SSEQ score and suboptimal Image Entropy score results on STS, and further 

illustrates highest Image Entropy score on ITS, thanks to the learning ability of its end-to-end network. DoubleDIP 

[23] ranks first in term of Image Entropy on STS. On the other hand, AODNet, LPNet, RGNet and FFANet get 

lower Image Entropy values than the original dusty images on STS. This may be due 

to color distortion during their recovery process. For ITS, FFANet gets highest SSEQ score, and RGNet get 

suboptimal performance in terms of SSEQ and Image Entropy. 

We show two examples of dedusting results from STS and ITS in Figure 4. From the comparison of the 

experimental results of several recent image enhancement-based methods on the RSIDR, we can find that the 
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DedustNet can produce more visually pleasant dedusted results on both STS and ITS. AODNet and FFANet can 

remove dust storm on outdoor scenes in some extant. However, the dedusted results on indoor images, the colors 

of restored images obtained by RGNet and FFANet are seriously changed, and thus make the dedusted results look 

unnatural. The DoubleDIP is committed to improving the brightness of images, and ignored the recovery of the 

dusty color. The RGNet make the colors of outdoor dedusted results become deeper. LPNet can reduce a certain 

degree of dust storms, however, there are deeper shadows on the edges of its all recovered images. 

We have further conducted an experiment on HTS, whose dusty images have more details and color changes. 

Similarly, Table. 3 show quantitative evaluation results on our synthetic hybrid testing dataset (i.e. HTS) in terms 

of both full-reference and no-reference metrics. As seen from Table 3, DedustNet obtains highest PSNR value, 

SSEQ and Image Entropy score, which illustrates its effectiveness in image dedusting task. RGNet achieves second 

higher in terms of PSNR, SSIM and SSEQ. AODNet shows its highest SSIM value compared with other methods. 

For qualitative evaluation of dedusted results on HTS, Figure 5 illustrates eight dedusted examples obtained by 

6 state-ofthe-art methods. And we can observe that, the dedusted results obtained by DoubleDIP are becoming 

bright, but the colors of dedusted results are leaded to deeper at same times. AODNet gets obvious dedusting effect. 

LPNet and RGNet make the colors of final restored images distortion, and thus look unnatural. FFANet gets more 

bright effect dedusted results, such as the images of (f) from Figure 5. And the DedustNet can obviously remove 

dust storms from images, but the color saturations of restored results are degraded compared with the ground 

truths. 

3.2.  Results on Real-world Datasets 

Although we train all six networks on synthesized dusty images, it can also be generalized to real-world dusty 

images. Figure 6 shows eight dusty images in real scenes and the corresponding dedusted results generated by 

several state-ofthe-art image enhancement-based algorithms. For DoubleDIP [29], the dust storms are barely 

removed or even become more sever visually in some cases, as observed in the second image of (b) in Figure 6. 

AODNet [30], and FFANet [33] can reduce a certain degree of dust storms for certain images, such as the first 

mage and the last two images. However, the effects of the two methods are worse when they are applied to the 

images with many details and deep colors, as observed in the third images and the five images of (c) and (f), 

respectively. Although LPNet [31] and RGNet [32] have certain effect of dedusting, they sometimes cause image 

color distortion, and thus make the recovered images seem unnatural, such as the last two images of (d), and the 

second, third and fourth images of (e). As shown in the last column of Figure 6, DedustNet achieves obvious 

effectiveness of image dedusting, and protects the image details in large degree as well, such as the windows of 

buildings in the sixth image, and the dense leaves of trees in the last image. 

For quantitatively evaluation for real-world dedusted results, we adopt two no-reference metrics as the 

evaluation indexes. Table 3 illustrates average no-reference evaluation results of dedusted results on real-world 

images. Form Table 3, we observe that our DedustNet achieves the highest SSEQ and Image Entropy scores, which 

means that the method shows its obvious superiority in image dedusting task compared with other five methods. 

Notice again, we reverse the SSEQ score to make the correlation consistent to full-reference metrics. 

According to the observation, the RGB histogram of a clean weather image is basically coincident and evenly 

distributed in the value space. In contrast, from Figure 7, we can find that the RGB color distribution of a real-

world dusty image is relatively separate, and concentrated in a certain value range. Figure 7 shows two examples 
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of RGB histogram of dedusted results obtained by different methods. As Figure 7 shows, for the first example, 

which contains multiple clear objects, DoubleDIP and AODNet make the color distribution interval larger in 

certain degree. The RGB color distributions of LPNet, RGNet and FFANet become relatively coincident. And 

DedustNet not only makes the color distribution basically coincide, but also distributes evenly in the whole color 

value space, which meaning the dedusted results obtained by DedustNet are more effectiveness. For the second 

example, that contains more image detail, such leaves of tree, DoubleDIP makes the RGB distribution over the 

entire range generally, but the RGB color distributions is still basically not coincident, which is directly reflected 

in its visual subjective feeling. AODNet, LPNet, RGNet and FFANet make the distribution of three colors 

relatively concentrated and coincide, but all of them are still limited to a certain range. DedustNet shows its 

effectiveness in processing dusty image with more details. 

Besides, in order to observe restored image detail information of dedusted real-world results more intuitively, 

we further extract image edges from the dedusted images obtained by different methods based on Canny Operator, 

respectively. Figure 8 illustrates texture maps of three different common scenes (including city, person and 

vehicle). From Figure 8, we can find that all of the six image-enhancement-based methods can preserve the image 

edge details in different degrees. Specifically, for city scene, all the compared methods have obvious effect on the 

restoration of the edge detail of close-up scenery, such as the building in first row images of Figure 8. In addition, 

FFANet and DedustNet can further recover some detail of remote objects. For person scene, as shown in the third 

and fourth row of Figure 8, all compared methods restored a large number character details, which are very useful 

for the following high-level computer vision tasks, such as target detection, automatic driving recognition 

technology. And as illustrated in the last two rows of Figure 8, for the vehicle scene, almost all methods can make 

vehicle details clear, and DedustNet can restore part of the road scene details. 

3.3. Running Times 

Table 5 reports the single image running time of each algorithm, averaged over the street scene images (256 * 512) 

in RSIDR, using a machine with 1.80 GHz CPU and 8G RAM. All methods are implemented in Python. AODNet 

is the most efficiency method thanks to its light weight structure. And the DedustNet costs second short running 

time on HTS, which is showing the second higher image dedusting speed. 

4. Conclusion 

In recent years, dusty weather is becoming more and more frequent. The occurrence of dust storm not only effects 

the visibility of the scene, but also may affect the driving safety. However, the real-world dusty image dataset is 

small and difficult to collect, which hinders the related research in the field of image dedusting. Therefore, in this 

paper, we propose a large-scale synthetic dusty image dataset, named RSIDR, which is the first systematic and 

published dusty image dataset to promote the further development of this field. In addition, we systematically 

evaluate 6 the-state-of-art image enhancement-based methods in single image dedusting task on the proposed 

RSIDR. For the evaluation of dedusted results obtain by different methods, rather than solely use full reference 

metrices, such as PSNR/SSIM, which need dusty clean image pair as input, we further conduct no-reference 

metrices (including SSEQ and Image Entropy) to evaluate the restored results of both synthetic and real-world 

dedusted results, so as to quantitatively evaluate 6 different algorithms more comprehensively. 
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Table 2. Average full-reference and no-reference evaluations results of dehazed results on STS and ITS. 

STS 

Methods Inputs DoubleDIP [29] AODNet [30] LPNet [31] RGNet [32] FFANet [33] DedusNet 

PSNR 13.09 14.24 20.48 17.70 21.60 22.42 34.93 

SSIM 0.6835 0.7413 0.8443 0.7939 0.8753 0.8651 0.9751 

SSEQ 74.52 61.38 83.28 75.27 73.03 69.00 85.59 

Entropy 6.62 7.44 6.26 6.57 5.95 6.51 6.75 

ITS 

PSNR 14.69 13.70 16.94 15.75 21.62 15.09 33.08 

SSIM 0.7534 0.7701 0.8071 0.7947 0.8764 0.7483 0.9342 

SSEQ 63.59 56.97 63.29 49.03 64.47 65.07 56.67 

Entropy 7.29 7.15 6.92 7.02 7.44 7.16 7.73 

 

 

 

Figure 5. Examples of dedusted results on synthetic dusty images from CTS and ITS respectively. 
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Table 3. Average full-reference and no-reference evaluations results of dehazed results on STS and ITS. 

Methods DoubleDIP [29] AODNet [30] LPNet [31] RGNet [32] FFANet [33] DedustNet 

PSNR 16.97 19.64 19.20 21.03 14.92 21.25 

SSIM 0.8129 0.8999 0.8678 0.8765 0.5477 0.8764 

SSEQ 73.68 80.45 78.42 80.74 79.75 80.94 

Entropy 7.48 7.13 7.35 7.15 7.18 7.68 

 

 

 

Figure 6. Examples of dedusted results on synthetic dusty images from HTS. 

 

 

Figure 7. Examples of dedusted results on synthetic dusty images from CTS and ITS respectively. 
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Figure 8. Image edge information extracted from dedusted results obtained by different methods. 

 

Table 4. Comparison of average per-image running time (second) on synthetic images in RSIDR. 

Methods DoubleDIP AODNet LPNet RGNet FFANet Ours 

Time 180.45 0.0773 0.3908 3.0027 1.6167 0.2789 
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