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Abstract. To address the issues of easy entrapment in local optima and insufficient 

convergence precision in the Dung Beetle Optimization (DBO) algorithm, an improved DBO 

algorithm with a hybrid strategy (SADBO) is proposed. Initially, the tent chaotic mapping 

strategy is used to initialize the population, making the initial positions of the dung beetles more 

evenly distributed and enhancing population diversity. Secondly, the Sine Algorithm (SA) is 

introduced to improve global exploration capabilities. Finally, adaptive t-distribution is applied 

to perturb individuals, which assists the algorithm in evading localized optimum. Comparative 

experiments with four other algorithms and the original DBO algorithm demonstrate that 

SADBO surpasses them on the basis of accuracy and convergence speed on multiple benchmark 

test functions, proving the proposed algorithm’s superiority. 
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1. Introduction 

Optimization involves the process of adjusting and refining solutions to specific problems to achieve optimal 

or near-optimal outcomes. Utilizing optimization techniques allows for more rational and efficient use of 

resources in a sustainable manner. Traditional optimization algorithms typically employ specific mathematical 

models or solution methods to identify optimal solutions based on the problem at hand. However, these 

algorithms often have limitations, such as dependence on gradient information and difficulty in handling 

nonlinear complex problems [1]. Consequently, heuristic algorithms have emerged and are widely applied 

across various fields. Heuristic algorithms search for optimal solutions within the problem space by simulating 

natural evolution [2], physical phenomena [3], human behaviors [4], and more. They are frequently used in 

practical domains, such as fault diagnosis [5], path planning [6], wireless sensor networks [7], and various 

military-industrial applications [8], effectively addressing problems that traditional algorithms cannot solve in 

real-time execution. 

  In recent years, researchers have developed numerous population-based intelligence optimization 

algorithms, such as Differential Evolution (DE) [9], Particle Swarm Optimization (PSO) [10], Genetic 

Algorithm (GA) [11], Whale Optimization Algorithm (WOA) [12], Butterfly Optimization Algorithm (BOA) 

[13], and Sparrow Search Algorithm (SSA) [14]. Compared with traditional optimization techniques, these 

algorithms demonstrate superior performance in practical ap- plications. They offer high stability, easy 
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implementation, and effective solutions for complex optimization problems [15]. Despite the large variety of 

existing optimization algorithms, some cases still exist where these algorithms fail to adequately address the 

expected problems or produce counter-intuitive errors, highlighting the need for further algorithm development 

[16]. 

  Due to the limitations of swarm intelligence algorithms, researchers have also proposed many improvement 

strategies to enhance algorithm performance. For example, Fu et al. [17] combined the Chicken Swarm 

Optimization (CSO) algorithm with the Sparrow Search Algorithm (SSA), ensuring population diversity while 

improving search efficiency. Jia et al. [18] proposed an Improved Dwarf Mongoose Optimization (IDMO) 

algorithm that incorporates reverse learning for lens imaging and elite pool strategies during the foraging 

process of the alpha group, improving convergence precision. Inspired by the unidimensional update strategy 

of the Artificial Bee Colony (ABC) algorithm, Sung et al. [19] proposed a novel Differential Evolution (DE) 

algorithm. This algorithm combines ranking behavior and adaptive dimensional strategies to achieve an 

appropriate equilibrium of exploitation and exploration. 

  Dung Beetle Optimizer (DBO), introduced by Xue et al. in 2023 [20]. The algorithm simulates the division 

of labor among dung beetle populations and divides the population into ball-rolling, spawning, foraging, and 

stealing dung beetles. This algorithm achieves high precision and rapid convergence by maintaining a delicate 

equilibrium between global search and local exploitation. However, the DBO algorithm also has issues such 

as a propensity to become ensnared in local optima and an absence of population diversity. Therefore, this 

paper pro- poses a hybrid multi-strategy improved DBO algorithm named SADBO. First, the tent chaotic 

mapping method is employed to initialize the population, increasing diversity, expanding the solution space 

search range, and enhancing global optimization ability. Then, the Sine Algorithm (SA) is introduced to im- 

part the local exploitation and global exploration strengths of SA to the dung beetles. Finally, the algorithm’s 

convergence accuracy is enhanced through an adaptive t-distribution perturbation, which helps in avoiding 

local optima. 

2. Dung Beetle Optimizer (DBO) 

2.1.  Ball-Rolling Dung Beetles 

Dung beetles use light to guide their navigation and ensure they move in a straight line when rolling dung to 

create dung balls in the natural environment. However, dung beetles occasionally encounter impediments. The 

probability of encountering an impediment is given by Eq. (1). The position update when rolling the dung ball 

without encountering an impediment is described by Eq. (2). The dung beetle reorients itself when it encounters 

an impediment by dancing over the dung ball to find a new rolling path, and it updates its position as indicated 

by Eq. (3). 

𝑎 = {
1, 𝜂 > 𝜆

−1, 𝜂 ≤ 𝜆
                                    (1) 

𝑋𝑖
𝑖𝑡𝑒𝑟+1 = 𝑋𝑖

𝑖𝑡𝑒𝑟 + 𝛼 × 𝑘 × 𝑋𝑖
𝑖𝑡𝑒𝑟−1 + 𝑏 × ∆𝑋                       (2) 

𝑋𝑖
𝑖𝑡𝑒𝑟+1 = 𝑋𝑖

𝑖𝑡𝑒𝑟 + tan𝜃 ∙ |𝑋𝑖
𝑖𝑡𝑒𝑟 − 𝑋𝑖

𝑖𝑡𝑒𝑟−1|                        (3) 
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The probability 𝜆 of the dung beetle encountering an impediment is denoted by Eq. (1), where 𝜂 is a 

random integer within the range of 0 to 1, and 𝜆 ∈ (0, 1). In Eq. (2), 𝑘 is the coefficient of deviation, with 

𝑘 ∈ (0, 0.02], 𝑏 is a constant, with 𝑏 ∈ (0, 1), and ∆𝑋 denotes the intensity of the light, where ∆𝑋 = 𝑋𝑖 −

𝑋𝑤, and 𝑋𝑤 constitutes the most detrimental position within the population. In Eq. (3), 𝜃 ∈ [0, 𝜋] denotes 

the deviation coefficient, and when 𝜃 ∈ {0, 𝜋 2⁄ , 𝜋}, the position is not updated, and tan 𝜃 is meaningless. 

2.2. Spawning Dung Beetles (Brood Ball) 

In order to guarantee an atmosphere of safety for female dung beetles to deposit their eggs and safeguard their 

offspring, they transport the dung ball to a particular location. The secure area is defined as follows: 

{
𝐿𝑏𝑠𝑎 = max(𝑋𝑙𝑏 × (1 − 𝑅), 𝐿𝑏)

𝑈𝑏𝑠𝑎 = min(𝑋𝑙𝑏 × (1 − 𝑅),𝑈𝑏)
                          (4) 

In this context, 𝑋𝑙𝑏 indicates the current local best position, 𝑅 is calculated as 𝑡 𝑇⁄ , 𝐿𝑏 and 𝑈𝑏 denote 

the lower and upper limits of the feasible region. Lower and upper boundaries of the secure area are denoted 

by the abbreviations 𝐿𝑏𝑠𝑎 and 𝑈𝑏𝑠𝑎, respectively. 

The secure area is recognized, and female dung beetles deposit its eggs there, resulting in the construction 

of a brood ball. The position on the brood ball changes in accordance with Eq. (5). If the brood ball’s position 

exceeds the secure area, it is adjusted based on Eq. (6). In Eq. (5), the dimension of the optimization problem 

is 𝐷, and 𝑏1 and 𝑏2 are 1 × 𝐷 distinct random vectors. 

𝐵𝑖
𝑖𝑡𝑒𝑟+1 = 𝑋𝑙𝑏 + 𝑏1 × (𝐵𝑖

𝑖𝑡𝑒𝑟 − 𝐿𝑏𝑠𝑎) + 𝑏1 × (𝐵𝑖
𝑖𝑡𝑒𝑟 − 𝑈𝑏𝑠𝑎)               (5) 

𝐵𝑖 = {
𝐿𝑏𝑠𝑎, 𝐵𝑖 < 𝐿𝑏𝑠𝑎

𝑈𝑏𝑠𝑎 , 𝐵𝑖 > 𝑈𝑏𝑠𝑎
                             (6) 

2.3. Foraging Dung Beetles 

The brood ball matures through a little dung beetle, which then emerges from the earth to forage. The little 

dung beetle selects a foraging location that is strategically advantageous, as it prioritizes areas with a high 

probability of locating sustenance. The optimal foraging range is defined by Eq. (7). Once this optimal range 

is established, the little dung beetle’s foraging position is updated according to Eq. (8). 

{
𝐿𝑏𝑓𝑎 = max(𝑋𝑔𝑏 × (1 − 𝑅), 𝑈𝑏)

𝑈𝑏𝑓𝑎 = min(𝑋𝑔𝑏 × (1 + 𝑅), 𝑈𝑏)
                         (7) 

𝑋𝑖
𝑖𝑡𝑒𝑟+1 = 𝑋𝑖

𝑖𝑡𝑒𝑟 + 𝐶1 × (𝑋𝑖
𝑖𝑡𝑒𝑟 − 𝐿𝑏𝑓𝑎) + 𝐶2 × (𝑋𝑖

𝑖𝑡𝑒𝑟 −𝑈𝑏𝑓𝑎)              (8) 

The global optimal position is denoted by 𝑋𝑔𝑏 in Eq. (7), while the optimal foraging area’s lower and upper 

bounds are determined by 𝐿𝑏𝑓𝑎 and 𝑈𝑏𝑓𝑎. In Eq. (8), 𝐶1 is a 1 × 𝐷 vector of random numbers following 

a normal distribution, while 𝐶2 is a random vector with a value range of (0, 1). 

2.4. Stealing Dung Beetles 

Stealing Dung Beetles engage in pilfering dung balls from their peers. They prefer not to steal from random 

locations but instead target areas near the optimal spot for theft. The position of the Stealing Dung Beetle has 
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been updated as follows: 

𝑋𝑖
𝑖𝑡𝑒𝑟+1 = 𝑋𝑔𝑏 + 𝑆 × 𝑔 × (|𝑋𝑖

𝑖𝑡𝑒𝑟 − 𝑋𝑙𝑏| + |𝑋𝑖
𝑖𝑡𝑒𝑟 − 𝑋𝑔𝑏|)                (9) 

In Eq. (9), g is a random variable of size 1 × 𝐷 from a distribution that is normal, while 𝑆 is an invariant. 

3. Proposed Improvement 

3.1.  Tent Chaotic Map 

The initial dung beetle positions in the DBO algorithm are randomly distributed, resulting in an uneven 

distribution of individuals in the solution space. This irregular distribution reduces the algorithm’s accuracy 

and rapidity of convergence. The paper adds the tent chaos mapping approach [21] to the DBO algorithm in 

order to overcome this problem. Unlike traditional random initialization methods, the tent chaos mapping 

generates a more even distribution of individual positions within the population, thereby enhancing population 

diversity. The tent mapping function is formulated as: 

𝑥𝑛
𝑚+1 = {

2𝑥𝑛
𝑚,0 ≤ 𝑥 ≤ 0.5

2(1 − 𝑥𝑛
𝑚),0.5 ≤ 𝑥 ≤ 1

                        (10) 

where 𝑚 represents the spatial dimension and 𝑛 is the population size. 

3.2. Improvements Using the Sine Algorithm 

The Sine Algorithm (SA) [22] is a simplified variant derived from the theoretical framework of the Sine Cosine 

Algorithm (SCA) [23]. It employs the sine function to execute iterative optimization, demonstrating robust 

global exploration capabilities. Additionally, SA features a streamlined structure and operates with increased 

efficiency. The updated location of the Sine Algorithm is shown in Eq. (11). 

𝑥𝑖
𝑖𝑡𝑒𝑟+1 = 𝑥𝑖

𝑖𝑡𝑒𝑟 + 𝑟1sin(𝑟2) × |𝑟3𝑝𝑖
𝑖𝑡𝑒𝑟 − 𝑥𝑖

𝑖𝑡𝑒𝑟|                   (11) 

  In Eq. (11), 𝑝𝑖
𝑖𝑡𝑒𝑟 represents the best individual position in the iter-th iteration. The variable 𝑟1 denotes a 

nonlinear decreasing function, 𝑟2  and 𝑟3  represent random numbers, ranging from [0, 2𝜋 ] and [−2, 2] 

respectively. The formula for 𝑟1 is: 

𝑟1 = 𝑎 × 𝑒−𝑡 𝑇⁄                                 (12) 

  To further cultivate the equilibrium between global exploration and local exploitation within the DBO 

algorithm, this paper integrates the SA guidance mechanism as a substitute for the conventional dung beetle 

tangent dance. During the rolling phase, the dung beetle’s position is updated using a sinusoidal operation. The 

improved formula is presented below: 

𝑥𝑖
𝑖𝑡𝑒𝑟+1 = {

𝑥𝑖
𝑖𝑡𝑒𝑟 + 𝛼 × 𝑘 × 𝑥𝑖

𝑖𝑡𝑒𝑟−1 + 𝑏 × ∆𝑥,𝑟 < 𝑆𝑇

𝑥𝑖
𝑖𝑡𝑒𝑟 + 𝑟1sin(𝑟2) × |𝑟3𝑝𝑖

𝑖𝑡𝑒𝑟 − 𝑥𝑖
𝑖𝑡𝑒𝑟|,𝑟 ≥ 𝑆𝑇

               (13) 

where 𝑆𝑇 ∈ (0.5, 1] and 𝑟 = 𝑟𝑎𝑛𝑑(1). In the improved position update formula, when 𝑟 < 𝑆𝑇, it means 

that the dung beetle has a target to roll, and then a new solution is generated using the first formula in Eq. (13), 
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whereas when 𝑟 ≥ 𝑆𝑇, it signifies that the dung beetle lacks a clear target and instead searches using sinusoidal 

function movements. The incorporation of the SA guidance mechanism significantly mitigates the randomness 

in the DBO algorithm’s position update strategy. With the inclusion of the SA strategy, the current optimal 

individual 𝑝𝑖
𝑖𝑡𝑒𝑟 will exchange information with the dung beetle individuals. This facilitates rapid information 

dissemination within the population and addresses the original algorithm’s deficiency in inter-individual 

information exchange. 

On the other hand, as seen from Eq. (11), r1 controls the search distance of the dung beetles. The linear 

decreasing strategy of 𝑟1 enables the algorithm to perform extensive searches in the early stages, providing 

strong global search capabilities. In the latter phases, the algorithm’s local exploitation capabilities are 

enhanced by the relatively smaller 𝑟1. 

3.3. Adaptive t-distribution Perturbation 

To address the problem of inadequate search capability and sensitivity to local optima to in subsequent 

iterations of the DBO algorithm, this paper employs an adaptive t-distribution perturbation. The specific 

position update method is detailed in Eq. (14). 

𝑋𝑛𝑒𝑤 = 𝑋𝑔𝑏(1 + 𝑡(𝑖𝑡𝑒𝑟))                              (14) 

where 𝑡(𝑖𝑡𝑒𝑟) denotes a t-distribution and 𝑖𝑡𝑒𝑟 is the number of iterations. Early in the iteration process, the 

value of 𝑖𝑡𝑒𝑟 is small, the t-distribution behaves resemble a Cauchy distribution, which grants the algorithm 

robust global exploration capabilities. Conversely, as iterations increase, the t-distribution becomes resemble 

to a Gaussian distribution in the later stages, which helps improve the local exploitation capabilities of the 

algorithm. 

Although the adaptive t-distribution perturbation enhances the algorithm’s global search capabilities and 

helps escape local optima, it cannot guarantee that the new solutions acquired through perturbation is better 

than the original solution. Thus, the greedy rule is introduced: 𝑋𝑔𝑏  will be updated only when the new 

solution of the individual through perturbation is superior to that before perturbation. The greedy rule is as 

shown in Eq. (15): 

𝑋𝑔𝑏 = {
𝑋𝑛𝑒𝑤,𝑓𝑖𝑡(𝑋𝑛𝑒𝑤) < 𝑓𝑖𝑡(𝑋𝑔𝑏)

𝑋𝑔𝑏 ,otherwise
                       (15) 

3.4. SADBO Algorithm Implementation Process 

Figure 1 presents the flowchart for the proposed SADBO algorithm. 

4. Discussion and Analysis of Experimental Results 

4.1. Experiment Preparation 

The simulation experiments presented in this paper were performed on a Windows 10 operating system. The 

hardware configuration includes a 12th generation Intel® Core™ i5-12600KF CPU and 32 GB of RAM (3600 

MHz). The programming software used is MATLAB R2022a. 

The convergence and equilibrium of the improved DBO algorithm were verified through the comparison of 
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the proposed SADBO algorithm to the DBO, SSA, PSO, WOA, and GWO algorithms. For fairness in the 

experiments, a uniform population size of 30 was assigned to each algorithm, with a maximum of 500 

iterations. Table 1 displays the parameter settings for the algorithms that are being compared. 

 

 

Figure 1. Flowchart of SADBO algorithm. 

 

Table 1. Parameter values of algorithms. 

 

 

4.2. Test Functions 

In this paper, 10 benchmark test functions via distinct characteristics have been selected over comparative 

experiments in function optimization. Table 2 displays the specific function information. 
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In the selected benchmark functions, f1 to f6 are unimodal test functions, while the others are multimodal 

test functions. Unimodal test functions have only one extreme point within the feasible domain and are 

typically utilized to evaluate the algorithm’s convergence capabilities, verifying whether the algorithm can 

find the global optimum with fewer iterations. Multimodal test functions usually contain multiple local 

minima, which can easily cause algorithms to become stuck in local optima. They are utilized to evaluate the 

algorithm’s local search capability, determining whether the algorithm can circumvent the current local 

optimum to determine the global optimum. 

 

Table 2. Benchmark functions. 

 

 

4.3. Results and Analysis 

The five selected comparison algorithms and the proposed SADBO were independently executed on 10 basic 

test functions for a total of 30 runs. The specific results are presented in Table 3. Fig. 2 presents the average 

fitness convergence curves of each algorithm. 

From the data in the table and the figures, it is clear that SADBO achieves the theoretical optimal value in 

most test functions. It demonstrates superior accuracy in overall optimization results compared to other 

algorithms, reflecting the excellent local development performance of SADBO. As shown in Fig. 2, on most 

multimodal test functions, SADBO not only achieves the highest convergence accuracy but also converges the 

fastest, typically finding the optimal value within 30 iterations. Thus, its convergence speed is significantly 

faster than that of other algorithms. In a few test functions (𝑓5, 𝑓7), although the optimal value was not found 

during the optimization process, the precision of optimization improved compared to the original DBO. 

Overall, compared to other algorithms, SADBO achieves a good balance between development capability and 

exploration capability. 
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Table 3. Experimental results. 

 

5. Conclusion 

Given that the DBO algorithm is capable of becoming ensnared in local optima and may suffer from 

insufficient convergence accuracy, this paper presents a hybrid strategy-improved algorithm, SADBO, which 

substantially improves the algorithm’s search performance and achieves a suitable equilibrium among the 

capacity for exploration and exploitation. The DBO, SSA, PSO, WOA, and GWO algorithms were compared 

to the results of experiments conducted on 10 benchmark test functions. The results suggest that the SADBO 

algorithm exhibits a higher degree of convergence accuracy and a faster convergence speed when contrasted 

with a variety of metaheuristic optimization algorithms. Therefore, the SADBO algorithm offers a new 
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perspective and methodology for addressing complex optimization problems and is expected to find 

widespread application in various fields, including task scheduling, path planning, and other combinatorial 

optimization problems. 

 

 

Figure 1. Convergence curves of different algorithms. 
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