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Abstract. To address the issues of easy entrapment in local optima and insufficient
convergence precision in the Dung Beetle Optimization (DBO) algorithm, an improved DBO
algorithm with a hybrid strategy (SADBO) is proposed. Initially, the tent chaotic mapping
strategy is used to initialize the population, making the initial positions of the dung beetles more
evenly distributed and enhancing population diversity. Secondly, the Sine Algorithm (SA) is
introduced to improve global exploration capabilities. Finally, adaptive t-distribution is applied
to perturb individuals, which assists the algorithm in evading localized optimum. Comparative
experiments with four other algorithms and the original DBO algorithm demonstrate that
SADBO surpasses them on the basis of accuracy and convergence speed on multiple benchmark
test functions, proving the proposed algorithm’s superiority.
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1. Introduction

Optimization involves the process of adjusting and refining solutions to specific problems to achieve optimal
or near-optimal outcomes. Utilizing optimization techniques allows for more rational and efficient use of
resources in a sustainable manner. Traditional optimization algorithms typically employ specific mathematical
models or solution methods to identify optimal solutions based on the problem at hand. However, these
algorithms often have limitations, such as dependence on gradient information and difficulty in handling
nonlinear complex problems [1]. Consequently, heuristic algorithms have emerged and are widely applied
across various fields. Heuristic algorithms search for optimal solutions within the problem space by simulating
natural evolution [2], physical phenomena [3], human behaviors [4], and more. They are frequently used in
practical domains, such as fault diagnosis [5], path planning [6], wireless sensor networks [7], and various
military-industrial applications [8], effectively addressing problems that traditional algorithms cannot solve in
real-time execution.

In recent years, researchers have developed numerous population-based intelligence optimization
algorithms, such as Differential Evolution (DE) [9], Particle Swarm Optimization (PSO) [10], Genetic
Algorithm (GA) [11], Whale Optimization Algorithm (WOA) [12], Butterfly Optimization Algorithm (BOA)
[13], and Sparrow Search Algorithm (SSA) [14]. Compared with traditional optimization techniques, these

algorithms demonstrate superior performance in practical ap- plications. They offer high stability, easy
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implementation, and effective solutions for complex optimization problems [15]. Despite the large variety of
existing optimization algorithms, some cases still exist where these algorithms fail to adequately address the
expected problems or produce counter-intuitive errors, highlighting the need for further algorithm development
[16].

Due to the limitations of swarm intelligence algorithms, researchers have also proposed many improvement
strategies to enhance algorithm performance. For example, Fu et al. [17] combined the Chicken Swarm
Optimization (CSO) algorithm with the Sparrow Search Algorithm (SSA), ensuring population diversity while
improving search efficiency. Jia et al. [18] proposed an Improved Dwarf Mongoose Optimization (IDMO)
algorithm that incorporates reverse learning for lens imaging and elite pool strategies during the foraging
process of the alpha group, improving convergence precision. Inspired by the unidimensional update strategy
of the Artificial Bee Colony (ABC) algorithm, Sung et al. [19] proposed a novel Differential Evolution (DE)
algorithm. This algorithm combines ranking behavior and adaptive dimensional strategies to achieve an
appropriate equilibrium of exploitation and exploration.

Dung Beetle Optimizer (DBO), introduced by Xue et al. in 2023 [20]. The algorithm simulates the division
of labor among dung beetle populations and divides the population into ball-rolling, spawning, foraging, and
stealing dung beetles. This algorithm achieves high precision and rapid convergence by maintaining a delicate
equilibrium between global search and local exploitation. However, the DBO algorithm also has issues such
as a propensity to become ensnared in local optima and an absence of population diversity. Therefore, this
paper pro- poses a hybrid multi-strategy improved DBO algorithm named SADBO. First, the tent chaotic
mapping method is employed to initialize the population, increasing diversity, expanding the solution space
search range, and enhancing global optimization ability. Then, the Sine Algorithm (SA) is introduced to im-
part the local exploitation and global exploration strengths of SA to the dung beetles. Finally, the algorithm’s
convergence accuracy is enhanced through an adaptive t-distribution perturbation, which helps in avoiding

local optima.

2. Dung Beetle Optimizer (DBO)
2.1. Ball-Rolling Dung Beetles

Dung beetles use light to guide their navigation and ensure they move in a straight line when rolling dung to
create dung balls in the natural environment. However, dung beetles occasionally encounter impediments. The
probability of encountering an impediment is given by Eq. (1). The position update when rolling the dung ball
without encountering an impediment is described by Eq. (2). The dung beetle reorients itself when it encounters

an impediment by dancing over the dung ball to find a new rolling path, and it updates its position as indicated
by Eq. (3).

_(1L,n>24
a@= {—1, n<A (1
xjrer+l = X[ 4+ a x k x X[ + b X AX )
Xiiter+1 — Xiiter +tané - |Xiiter _Xiiter—ll (3)
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The probability A of the dung beetle encountering an impediment is denoted by Eq. (1), where 7 is a
random integer within the range of 0 to 1, and A € (0, 1). In Eq. (2), k is the coefficient of deviation, with
k € (0,0.02], b isa constant, with b € (0,1),and AX denotes the intensity of the light, where AX = X; —
X%, and XV constitutes the most detrimental position within the population. In Eq. (3), 8 € [0, ] denotes

the deviation coefficient, and when 6 € {0,7/2, 1}, the position is not updated, and tan 6 is meaningless.
2.2. Spawning Dung Beetles (Brood Ball)

In order to guarantee an atmosphere of safety for female dung beetles to deposit their eggs and safeguard their

offspring, they transport the dung ball to a particular location. The secure area is defined as follows:

{Lbsa = max (le X (1 —R),Lb) 4)

Ub%® = min (X' x (1 — R),Ub)

In this context, X'? indicates the current local best position, R is calculated as t/T, Lb and Ub denote
the lower and upper limits of the feasible region. Lower and upper boundaries of the secure area are denoted
by the abbreviations Lb%* and Ub%%, respectively.

The secure area is recognized, and female dung beetles deposit its eggs there, resulting in the construction
of a brood ball. The position on the brood ball changes in accordance with Eq. (5). If the brood ball’s position
exceeds the secure area, it is adjusted based on Eq. (6). In Eq. (5), the dimension of the optimization problem

is D,and b; and b, are 1 X D distinct random vectors.
Biiter+1 — le + bl X (Biiter _ Lbsa) + bl X (Biiter _ Ubsa) (5)

Lbs?, B; < Lb5®
Bl - {Ubsa, Bi > Ubsa (6)

2.3. Foraging Dung Beetles

The brood ball matures through a little dung beetle, which then emerges from the earth to forage. The little
dung beetle selects a foraging location that is strategically advantageous, as it prioritizes areas with a high
probability of locating sustenance. The optimal foraging range is defined by Eq. (7). Once this optimal range
is established, the little dung beetle’s foraging position is updated according to Eq. (8).

Lbf® = max (X9 x (1 — R), Ub) e
Ub’® = min (X9° x (1 + R),Ub)
Xiiter+1 — Xiiter + Cl X (Xiiter _ Lbfa) + Cz X (Xiiter _ Ubfa) (8)

The global optimal position is denoted by X9 in Eq. (7), while the optimal foraging area’s lower and upper
bounds are determined by Lb/* and Ubf%.InEq. (8), C; isa 1 x D vector of random numbers following

a normal distribution, while C, is a random vector with a value range of (0, 1).
2.4. Stealing Dung Beetles

Stealing Dung Beetles engage in pilfering dung balls from their peers. They prefer not to steal from random

locations but instead target areas near the optimal spot for theft. The position of the Stealing Dung Beetle has

[JITAVol.1 No. 4 169



been updated as follows:
Xiiter+1 — ng +S% g X (|Xiiter _ le| + |Xiiter _ ng') (9)

In Eq. (9), g is arandom variable of size 1 X D from a distribution that is normal, while S is an invariant.

3. Proposed Improvement
3.1. Tent Chaotic Map

The initial dung beetle positions in the DBO algorithm are randomly distributed, resulting in an uneven
distribution of individuals in the solution space. This irregular distribution reduces the algorithm’s accuracy
and rapidity of convergence. The paper adds the tent chaos mapping approach [21] to the DBO algorithm in
order to overcome this problem. Unlike traditional random initialization methods, the tent chaos mapping
generates a more even distribution of individual positions within the population, thereby enhancing population

diversity. The tent mapping function is formulated as:

2xm 0<x<05
m+1 _ n SX=
Xn ‘{2(1—x;{1), 05<x<1 (10)

where m represents the spatial dimension and n is the population size.
3.2. Improvements Using the Sine Algorithm

The Sine Algorithm (SA) [22] is a simplified variant derived from the theoretical framework of the Sine Cosine
Algorithm (SCA) [23]. It employs the sine function to execute iterative optimization, demonstrating robust
global exploration capabilities. Additionally, SA features a streamlined structure and operates with increased

efficiency. The updated location of the Sine Algorithm is shown in Eq. (11).

xiiter+1 — xiiter + rlsin (Tz) X |r3piiter _ xiiterl (11)

In Eq. (11), piiter represents the best individual position in the iter-th iteration. The variable r; denotes a
nonlinear decreasing function, 7, and 73 represent random numbers, ranging from [0, 2] and [—2, 2]

respectively. The formula for r; is:
rn=axe t/T (12)

To further cultivate the equilibrium between global exploration and local exploitation within the DBO
algorithm, this paper integrates the SA guidance mechanism as a substitute for the conventional dung beetle
tangent dance. During the rolling phase, the dung beetle’s position is updated using a sinusoidal operation. The

improved formula is presented below:

X

(13)

iter+1 _ { xiiter +a Xk X xiiter_1 + b X Ax, r<ST

' x4+ 1ysin (1) X |rspfte” — x[€7|, v > ST

where ST € (0.5,1] and r = rand(1). In the improved position update formula, when r < ST, it means

that the dung beetle has a target to roll, and then a new solution is generated using the first formula in Eq. (13),
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whereas when r > ST, it signifies that the dung beetle lacks a clear target and instead searches using sinusoidal
function movements. The incorporation of the SA guidance mechanism significantly mitigates the randomness
in the DBO algorithm’s position update strategy. With the inclusion of the SA strategy, the current optimal
individual piiter will exchange information with the dung beetle individuals. This facilitates rapid information
dissemination within the population and addresses the original algorithm’s deficiency in inter-individual
information exchange.

On the other hand, as seen from Eq. (11), rl controls the search distance of the dung beetles. The linear
decreasing strategy of r; enables the algorithm to perform extensive searches in the early stages, providing
strong global search capabilities. In the latter phases, the algorithm’s local exploitation capabilities are

enhanced by the relatively smaller ;.
3.3. Adaptive t-distribution Perturbation

To address the problem of inadequate search capability and sensitivity to local optima to in subsequent
iterations of the DBO algorithm, this paper employs an adaptive t-distribution perturbation. The specific
position update method is detailed in Eq. (14).

Xnew = X9 (1 + t(iter)) (14)

where t(iter) denotes a t-distribution and iter is the number of iterations. Early in the iteration process, the
value of iter is small, the t-distribution behaves resemble a Cauchy distribution, which grants the algorithm
robust global exploration capabilities. Conversely, as iterations increase, the t-distribution becomes resemble
to a Gaussian distribution in the later stages, which helps improve the local exploitation capabilities of the
algorithm.

Although the adaptive t-distribution perturbation enhances the algorithm’s global search capabilities and
helps escape local optima, it cannot guarantee that the new solutions acquired through perturbation is better
than the original solution. Thus, the greedy rule is introduced: X9° will be updated only when the new
solution of the individual through perturbation is superior to that before perturbation. The greedy rule is as

shown in Eq. (15):

ng = {XneWJ fit(Xnew) < fit(ng) (15)
Xx9b, otherwise
3.4. SADBO Algorithm Implementation Process

Figure 1 presents the flowchart for the proposed SADBO algorithm.

4. Discussion and Analysis of Experimental Results
4.1. Experiment Preparation

The simulation experiments presented in this paper were performed on a Windows 10 operating system. The
hardware configuration includes a 12th generation Intel® Core™ i5-12600KF CPU and 32 GB of RAM (3600
MHz). The programming software used is MATLAB R2022a.

The convergence and equilibrium of the improved DBO algorithm were verified through the comparison of
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the proposed SADBO algorithm to the DBO, SSA, PSO, WOA, and GWO algorithms. For fairness in the
experiments, a uniform population size of 30 was assigned to each algorithm, with a maximum of 500

iterations. Table 1 displays the parameter settings for the algorithms that are being compared.

| Set relevant parameters |
¥

Initialize dung beetle positions using
the Tent chaotic map with Eq.(10)
L 2

l Calculate the initial fitness value ‘
L2
| Update the position of the ball-rolling dung beetle |l=

h J

Update position using Eq.(2) | | Update position using Eq.(11) |
| |

Update the positions of the brood ball, the
foraging dung beetle, and the stealing dung beetle

v
Update the global best position |

Adaptive t-distribution perturbation to
individuals using Eqg.(14)

‘ If the new solution is better, update xeb |

yes

iter <T?

Figure 1. Flowchart of SADBO algorithm.

Table 1. Parameter values of algorithms.

Algorithm Parameters

SADBO a=1,k=01,A=0.1,5=0.5b=0.3
DBO E=01,A=0.1,5=050b=0.3
SSA PD =02 8SD=0.1, ST =028
PSO w=09—-tx(09-02)/T, 1,0 =2
WOA a=2-2t/T

GWO a=2-2t/T

4.2. Test Functions
In this paper, 10 benchmark test functions via distinct characteristics have been selected over comparative

experiments in function optimization. Table 2 displays the specific function information.
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In the selected benchmark functions, f1 to f6 are unimodal test functions, while the others are multimodal
test functions. Unimodal test functions have only one extreme point within the feasible domain and are
typically utilized to evaluate the algorithm’s convergence capabilities, verifying whether the algorithm can
find the global optimum with fewer iterations. Multimodal test functions usually contain multiple local
minima, which can easily cause algorithms to become stuck in local optima. They are utilized to evaluate the
algorithm’s local search capability, determining whether the algorithm can circumvent the current local

optimum to determine the global optimum.

Table 2. Benchmark functions.

Function D Search space  fmin

fi(z) =31, x? 30 [—100, 100]” 0
fa(@) = Xizy |l + T, fadl 30 [-10,100° 0
fa@) = X0, (S0 a) 0 [-100,1007 0
fa(z) = max;{|z,], 1 < i < n} 30 [—100,100)° 0

5(z) = 00, [100(zis1 — 27)? + (2 — 1)7] 30 [—30,30]7 0
fe(x) =31 | iz} + random]0, 1] 30 [—1.28,1.28]" 0
fr(z) = o0, —xisin(y/]z:]) 30 [—500, 500]" -12569.5
fa(z) =" [27 — 10cos(27z;) + 10] 30 [-5.12,5.12]7 0
fo(z) = —20 exp (—o,gm 30 [—32,32]7 0

—exp (£ 30, cos(2mzi)) + 20+ €

T

fio(z) = = S 22 — 7 lcos(f)—i—l 30 [=600,600° 0O

4.3. Results and Analysis

The five selected comparison algorithms and the proposed SADBO were independently executed on 10 basic
test functions for a total of 30 runs. The specific results are presented in Table 3. Fig. 2 presents the average
fitness convergence curves of each algorithm.

From the data in the table and the figures, it is clear that SADBO achieves the theoretical optimal value in
most test functions. It demonstrates superior accuracy in overall optimization results compared to other
algorithms, reflecting the excellent local development performance of SADBO. As shown in Fig. 2, on most
multimodal test functions, SADBO not only achieves the highest convergence accuracy but also converges the
fastest, typically finding the optimal value within 30 iterations. Thus, its convergence speed is significantly
faster than that of other algorithms. In a few test functions (fs, f-), although the optimal value was not found
during the optimization process, the precision of optimization improved compared to the original DBO.
Overall, compared to other algorithms, SADBO achieves a good balance between development capability and

exploration capability.
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Table 3. Experimental results.

SADBO DBO SSA PSO WoA GWO
best 0 9.92E-163 0 1.12E-05 1.95E-86  3.85E-29
fi  mean 0 3.35E-103 3.25E-52  237E-04 L44E-74  1.57TE-27
std 0 1.83E-102 1.77E-51 231E-04 3.94E-74 3.10E-27

best 3.34E-307 4.66E-81 9.70E-142 4.01E-03 8.53E-58 2.35E-17
f» mean 4.01E-236 3.10E-57 2.78E-30 4.72E+00 1.79E-50 1.24E-16

std 0 1.41E-56  1.21E-20 7.20E+00 5.96E-50 9.12E-17
best 0 1.84E-129 1.61E-136 232E+01 1.98E+04 3.50E-09
fa  mean 0 2.45E-84 1.11E-25 8.74E+01 4.25E+04 2.96E-05
std 0 1.32E-83  6.04E-25 3.80E+01 1.12E+04 1.21E-04

best 8.26E-203 1.94E-80 2.03E-302 6.96E-01 2.23E-01 5.06E-08
f1 mean 3.63E-221 T7.19E-52  2.92E-26 1.10E+00 4.39E+01 5.82E-07
std 0 3.93E-51 1.5TE-25 258E-01  292E+01 5
best 2.50E+01 2.54E+01 1.50E-09 2.18E+01 2.68E+01 2.5
fr mean 254E+01 2.58E+01 9.84E-06 9.73E+01 2.79E+01 2.71E+01
std 3.34E-01  2.07E-01  1.71E-05 1.19E+02 447E-01 7.5
best 1.31E-06  2.43E-04 581E-05 9.96E-02 3.93E-05 5.79E-04
fo mean 1.72E-04 1.20E-03 1.73E-03 5.97E+00 3.17E-03 1.71E-03
std 1.44E-04  6.80E-04 1.26E-03 7.40E4+00 4.22E-03 8.77E-04
best -1.23E+04 -1.03E+04 -9.30E+03 -6.88E+403 -1.26E+04 -8.08E+03
fr mean -8.74E+03 -8.84E+03 -8.41E+03 -4.72E+03 -1.03E+04 -6.02E+03
std 1.04E+03 1.59E+03 6.82E+02 1.23E+03 1.75E+03 9.88E+02

best 0 0 0 4.80E+01 0 5.68E-14
fs  mean 0 0 0 1.00E+02 0 3.44E+00
std 0 0 0 2.50E+01 0 4.38E+00

best 444E-16 4.44E-16  4.44E-16  2.02E-03  4.44FE-16  6.79E-14
fo mean 4.44F-16 5.63E-16 4.44E-16 2.21E-01 4.35E-15 1.02E-13

std 0 6.49E-16 0 5.54E-01  2.35E-15  1.67E-14
best 0 0 0 9.12E-07 0 0

fio mean 0 3.74E-03 0 6.67E-03  1.16E-02  3.80E-03
std 0 2.05E-02 0 9.11E-03 4.47E-02  7.53E-03

5. Conclusion

Given that the DBO algorithm is capable of becoming ensnared in local optima and may suffer from
insufficient convergence accuracy, this paper presents a hybrid strategy-improved algorithm, SADBO, which
substantially improves the algorithm’s search performance and achieves a suitable equilibrium among the
capacity for exploration and exploitation. The DBO, SSA, PSO, WOA, and GWO algorithms were compared
to the results of experiments conducted on 10 benchmark test functions. The results suggest that the SADBO
algorithm exhibits a higher degree of convergence accuracy and a faster convergence speed when contrasted

with a variety of metaheuristic optimization algorithms. Therefore, the SADBO algorithm offers a new
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perspective and methodology for addressing complex optimization problems and is expected to find
widespread application in various fields, including task scheduling, path planning, and other combinatorial

optimization problems.
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Figure 1. Convergence curves of different algorithms.
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