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Abstract. To enhance the prediction accuracy rate of the fuzzy inference system (FIS) in 

nonlinear time series, the Long Short-Term Memory (LSTM) network is integrated into the FIS 

to improve the ability of neural networks to process the fuzzy information. On this basis, the 

Quantum Echo State Network (QESN) is added and optimized by the particle algorithm to 

predict the nonlinear time series. The results indicate that the proposed new self-evolving 

interval type II LSTM (eit2FNN-LSTM) can realize single-point prediction; also, it can be used 

for granular-level prediction by combining with information particles, thereby achieving long-

term prediction; besides, the QESN can predict the time series well, and its accurateness rate is 

higher than the benchmark algorithm. Therefore, the FIS based on quantum computing and the 

new eit2FNN-LSTM can effectively improve the prediction accuracy rate in the nonlinear time 

series, providing new ideas for prediction problems in other fields. 
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1. Introduction 

With the continuous progress of electronic technology and networks, computers have become an 

indispensable tool in people's daily lives. Under various functions, the most basic computing unit in 

computers is various logic devices made of semiconductor materials, which convert all information in 

the real world into two signals, “0” and “1” for storage and operation [1, 2]. However, the development 

of computers also has a bottleneck period. At the same time, it is found in the microscopic world that 

there is a big difference in the existence mode and movement law of the material in the world and the 

familiar classic world; especially, the “quantum state (QS)” of the microscopic particle can exist 

simultaneously at multiple different positions or both “0” and “1” states; in addition, there may also be 

“quantum entanglement” between the quantum; despite the distance between two particles, they will 

affect each other at any time [3, 4]. Therefore, experts have begun exploring quantum physics actively, 

hoping to understand and investigate quantum computing as much as possible and have quantum 

computing replace classical computing to make predictions with relevant affairs. 

Time series denotes data acquired on continuous time nodes that can reflect the fluctuation of an event 

or phenomenon with time. It is a collection of data that constitutes the time domain. In people’s daily 
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lives, time series can be seen everywhere, such as weather data that fluctuates with time, people’s 

consumption levels at different times, and the occurrence of peaks and troughs in stocks in the financial 

market; all of these are associated with time, and different situations may occur in a short time. 

Therefore, time series is critical in the natural and economic fields [5, 6]. 

Meanwhile, a large amount of data in reality can be modeled through time series; by looking for 

changing laws, things' future development and direction can be predicted. In the prediction process, past 

events of things may occur repeatedly, and the characteristics of these repeated occurrences can be seen 

statistically. There can be a connection between each thing, and this connection will show some 

statistical laws [7, 8]. Many real-life examples can be built into the corresponding event series prediction 

model and then predict the future development of things. However, the accuracy rate of many time series 

data is low, usually showing a fuzzy state, which will affect the prediction of the model. With the 

continuous progress of technology and the snowballing demand for the prediction of things, the accuracy 

rate of the time series needs to be improved, thereby improving the prediction performance. In the past 

time series prediction models, the fuzzy time model of fuzzy set theory can process fuzzy, incomplete, 

and uncertain data in time. Therefore, fuzzy information particles can also be considered an essential 

tool for solving long-term prediction problems [9]. 

In summary, information particles have a more significant advantage in the prediction of event series; 

thus, considering the advantages of quantum computing and Long Short-Term Memory (LSTM), the 

two are combined and applied to the nonlinear time series prediction of fuzzy inference system (FIS) to 

improve the prediction accurateness rate. 

2. Related Works 

Quantum computing is a disruptive new technology that may break traditional computing. Many experts 

and scholars consider it a brand-new computing technology, and it is hoped that it can gradually replace 

the classic computer in future development and play its role. Preskill (2018) pointed out that scale 

quantum technology in noise could perform tasks beyond the capabilities of current classic digital 

computers in the future; however, it would be affected by noise, which limited the dimension of quantum 

circuits that could be reliably implemented; through continuous explorations, it was expected to find a 

more accurate quantum gate for fully fault-tolerant quantum computing [10]. Linke et al. (2017) ran a 

series of algorithms on the two most advanced quantum position sub-computers under dissimilar 

technological platforms; one was that the openly reachable superconducting transmission tool had 

restricted connectivity, and another was a fully connected captive ion system. By comparing these two 

systems with different physical systems, it was understood that the utilization of more connected 

quantum algorithms and circuits benefited from a better connected qubit system. At the same time, the 

experiment showed that although quantum systems cannot replace classic computers, the critical factors 

of quantum computer expansion, such as the connectivity of qubits and the expressive power of gates, 

would be crucial for future quantum computers and their applications [11]. Gambetta et al. (2017) 

described the vital way to implement logical memory using superconducting qubits was to utilize the 
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rotating variety of the superficial code. By analyzing the current status of interconnected 

superconducting qubit network technology, it was learned that the combination of engineering solutions 

and quantum architecture laid the foundation for future scalable fault-tolerant quantum computers [12]. 

Zhao et al. (2017) analyzed the short-term prediction (STP) of traffic and pointed out that the 

emergence of a large number of traffic data and computing power in recent years had greatly improved 

the accurateness rate of traffic STP; then, a new LSTM network-based traffic prediction model was 

proposed. The comparison with the traditional prediction model found that the proposed model could 

consider the spatiotemporal correlation in the traffic system, which also proved that the proposed model 

had better performance [13]. Kong et al. (2017) believed that it was very challenging to predict the 

power load of a single energy user, which involved high volatility and uncertainty; then, a Recurrent 

Neural Network (RNN) model framework based on LSTM was proposed and tested on a set of public 

residential intelligent meter data. The results showed that the performance of the proposed LSTM 

method was superior to other algorithms, which further illustrated the method's effectiveness [14]. Based 

on the more advanced performance of the Fully Convolutional Network (FCN) in the task of classifying 

time series, Karim et al. (2017) put forward a time series categorization method for FCN with LTM 

RNN sub-modules; the results suggested that this model could significantly improve the performance 

of FNN; at the same time, after improvements, it was found that the model could show good performance 

[15]. 

In summary, the previous explorations on quantum computing are more about analyzing its fault 

tolerance. Also, LSTM has been commonly utilized for traffic prediction and the establishment of 

prediction models. However, few studies have integrated the two. Therefore, considering the 

computational efficiency and fault tolerance of quantum computing, as well as the ability of LSTM to 

process more complex problems, the two are fused and applied to the nonlinear time series prediction 

of FIS, thereby providing decision support for decision-makers. 

3. Method 

3.1.  LSTM Neural Network 

LSTM network, which often processes time-series data, belongs to RNN. Compared with ordinary 

RNNs, LSTM can process more extended time series. This method has been well-researched in science 

and technology, such as image analysis, handwriting recognition, and disease prediction [16, 17]. 

There will be some gating structures in the LSTM structure diagram. The gates at the index position 

of each series generally include three types: forget gate, input gate, and output gate. Among them, the 

forget gate determines whether a thing is forgotten. The LSTM determines the probability of forgetting 

the hidden cell state of the previous layer. The hidden state of the previous series and the data of this 

series are passed through the Sigmoid activation function to attain the output value of the forget gate, 

which can be expressed by Equation (1): 

𝑓(𝑡) = 𝜎(𝑊𝑓ℎ
(𝑡−1) + 𝑈𝑓𝑥

(𝑡) + 𝑏𝑓)                           (1) 
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where  𝑓(𝑡) represents the output of the forget gate; 𝜎 represents the Sigmoid activation function; 

𝑊𝑓 , 𝑈𝑓 , and 𝑏𝑓  represent the coefficients and bias of the linear relationship; ℎ(𝑡−1)  represents the 

hidden state of the previous series; 𝑥(𝑡) represents the input of the data of this series. 

The input gate of LSTM processes the input of the current series position. It is mainly composed of two 

parts. One part is to utilize the Sigmoid activation function to attain an output value, and the other is to 

utilize the tanh activation function to attain another output value. By multiplying the two output values, 

the state of the cell is updated, which can be represented by Equations (2) and (3): 

𝑖(𝑡) = 𝜎(𝑊𝑖ℎ
(𝑡−1) + 𝑈𝑖𝑥

(𝑡) + 𝑏𝑖)                            (2) 

𝑎(𝑡) = 𝑡𝑎𝑛ℎ(𝑊𝑎ℎ
(𝑡−1) + 𝑈𝑎𝑥

(𝑡) + 𝑏𝑎)                          (3) 

where 𝑊𝑖, and 𝑊𝑎 are coefficients and bias of linear relationship; represents the output value of the 

Sigmoid activation function, and represents the output value of the Tanh activation function. 

Before analyzing the output gate, it is necessary to update the cell state. The results of the forget gate 

and the input gate will both affect the cell state. The cell state is updated by the sum of their products, 

which can be expressed by Equation (4): 

𝐶(𝑡) = 𝐶(𝑡)⊗𝑓(𝑡) + 𝑖(𝑡)⊗𝑎(𝑡)                             (4) 

where 𝐶(𝑡) represents the state of the cell, 𝑓(𝑡) represents the output value of the forget gate, and ⊗ 

represents the Hadamard product. 

The LSTM output gate can obtain two parts of output after the hidden cell state is updated, which can 

be expressed by Equations (5) and (6): 

𝑜(𝑡) = 𝜎(𝑊𝑜ℎ
(𝑡−1) +𝑈𝑜𝑥

(𝑡) + 𝑏𝑜)                            (5) 

ℎ(𝑡) = 𝑜(𝑡)⊗ 𝑡𝑎𝑛ℎ(𝐶(𝑡))                                (6) 

3.2. Quantum Computing 

Quantum computing can enhance the computing speed of neural networks. According to relevant 

literature, in terms of information processing, qubit neurons are much stronger than classic neuron 

models [18-20]. In quantum computing, the state of a qubit is a vector of a two-dimensional complex 

space. It has two polarization states, corresponding to 0 and 1 in a binary state. On this basis, state 

superposition can also be performed, which can be expressed by Equation (7): 

 |𝜙⟩ = 𝑐0|0⟩ +𝑐1|1⟩                                (7) 

where 𝑐0 and 𝑐1 represent the amplitude of probability, that is, |𝜙⟩ either collapses to |0⟩ with a 

probability of |𝑐0|
2 , or |1⟩  with a probability of |𝑐1|

2 . Meanwhile, |𝑐0|
2  and |𝑐1|

2  satisfy the 

following conditions: 

|𝑐0|
2 + |𝑐1|

2 = 1                            (8) 
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Quantum logic gates are the most basic in quantum computing. They consist of a single-bit revolving 

gate and a double-bit controlled-NOT (CNOT) gate. Quantum revolving gates can change the phase of 

qubits, and CNOT gates can perform XOR operations. To simplify calculations, complex numbers are 

usually used to represent QS. The probability of |0⟩ is set to the real part, and the probability of |1⟩ is 

set to the imaginary part. Therefore, the paraphrase of the QS can be expressed by Equation (9): 

𝑓(𝜃) = 𝑒𝑖𝜃 = 𝑐𝑜𝑠 𝜃 + 𝑖 ⋅ 𝑠𝑖𝑛 𝜃                         (9) 

where 𝜃 represents the phase, i is the imaginary unit √−1. For the revolving gate, the phase change 

operation of the complex plane QS can be described as Equation (10): 

𝑓(𝜃1 + 𝜃2) = 𝑓(𝜃1) ⋅ 𝑓(𝜃2) = 𝑒
𝑖(𝜃1+𝜃2)                     (10) 

where 𝜃1  and 𝜃2  represent different quantum phases. The CNOT gate performs the phase reverse 

operation and is controlled by the parameter 𝛾, which can be described as Equation (11): 

𝑓 (
𝜋

2
⋅ 𝛾 − 𝜃) = {

𝑠𝑖𝑛 𝜃 + 𝑖 ⋅ 𝑐𝑜𝑠 𝜃 , 𝛾 = 1
𝑐𝑜𝑠 𝜃 − 𝑖 ⋅ 𝑠𝑖𝑛 𝜃 , 𝛾 = 0

                        (11) 

As shown in Equation (11), when 𝛾 takes 1, the QS realizes reverse rotation, and when it takes 0, it 

does not flip. The description and sentences of subsection. The description and sentences of subsection. 

The description and sentences of subsection. The description and sentences of subsection. The 

description and sentences of subsection. The description and sentences of subsection. 

3.3. Fuzzy Neural Network (FNN) 

The Quantum FNN integrates fuzzy theory and neural network, combining the two theories' advantages. 

Neural networks have adaptive solid learning capabilities and associative functions, which can apply 

related theories well. However, they cannot fully utilize some fuzzy information and existing empirical 

knowledge and have high requirements for sample data. Fuzzy inference can explain the reasoning 

process well and use expert knowledge well. It requires fewer data samples but too many manual 

interventions; therefore, the reasoning speed is slow, making adaptive learning difficult. Thus, the 

effective combination of the two can play a complementary role. The neural networks can improve the 

network computer learning ability, thereby improving the reasoning ability and providing free 

parameters that adjust the fuzzy rules for the fuzzy rule base. 

In FNNs, fuzzy neurons are essential, mainly fuzzy, fuzzy logic, and defuzzified neurons. At the time 

of input, the antecedent of the network consists of fuzzy neurons. Its input data can be deterministic or 

fuzzy, and standardized values are output through operations such as training. The fuzzy logic neuron is 

in the middle part of the network and is used to realize the fuzzy logic function or fuzzy integration 

function. Thus, the fuzzy logic neuron is a multi-input single-output neuron. In the latter part of the 

FNN, the output value needs to be deblurred; therefore, the output value is specific. Its structure is shown 

in Figure 1: 
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Figure 1. Structure of FNN. 

 

A typical FNN consists of an input layer, a fuzzy layer, a fuzzy inference layer, a defuzzification layer, 

and an output layer. Its network structure is shown in Figure 2: 

 

x1
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y

Input Layer Blur Layer
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Output ValueDeblurring Layer

 
 

 

Figure 2. Structure of FNN. 

 

When the number of nodes or weights is changed, or when choosing different membership functions 

of the fuzzy system, the architecture can be adjusted to realize the system function better. 

The concept of information particle was proposed in 1979, which can be expressed by Equation (12): 
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𝑔 =
Δ
(𝑋 𝑖𝑠 𝐺)𝑖𝑠 𝜆                             (12) 

where X represents the variable on the universe U, and G is the convex fuzzy subset of the universe U, 

which is presented by the membership function, indicating that X belongs to the possible probability of 

the fuzzy subset G. The purpose of using information particles is to simplify complex problems, thereby 

removing some irrelevant and redundant information. Different forms of information particles will be 

obtained when the numerical series in the time series is processed with different granulation functions. 

4. Experimental Process 

4.1. Model Construction 

The LSTM RNN is added to the type II fuzzy neural system. The long-term dependency relationship in 

the series data is processed further through the gate mechanism. Furthermore, the inference structure of 

a new self-evolving interval type II LSTM FNN (eit2FNN-LSTM) that can be used to synchronize and 

recognize nonlinear dynamic systems is obtained. The model mainly finds the functional relationship 

between the input and output values. In this system, there are multiple inputs and outputs. Based on the 

basic structure, it is assumed that the eit2FNN-LSTM model consists of n input nodes, m output nodes, 

and six layers. The first layer is the input layer with n nodes; each node represents an input feature value, 

and the input data will be sent to the fuzzy layer after input. The second layer is the fuzzification layer. 

Each node in this layer uses the interval type II Gaussian membership function to fuzzify the input value, 

thereby achieving fuzzification. 

In this layer, the j-th input variable 𝑥𝑡,𝑗 and the k-th rule can be indicated by the bounded interval of 

the upper membership function and the lower membership function, as shown in Equations (13) and 

(14): 

𝜑𝑘,𝑗
𝑢𝑝(𝑡) =

{
  
 

  
 𝑒𝑥𝑝 {−

1

2
(
(𝑥𝑡,𝑗−𝜇𝑘,𝑗

𝑙 )

𝜎𝑘,𝑗
)

2

} , 𝑥𝑡,𝑗 ≺ 𝜇𝑘,𝑗
𝑙

1, 𝜇𝑘,𝑗
𝑙 ≤ 𝑥𝑡,𝑗 ≤ 𝜇𝑘,𝑗

𝑟

𝑒𝑥𝑝 {−
1

2
(
(𝑥𝑡,𝑗−𝜇𝑘,𝑗

𝑟 )

𝜎𝑘,𝑗
)

2

} , 𝑥𝑡,𝑗 ≻ 𝜇𝑘,𝑗
𝑟

                  (13) 

𝜑𝑘,𝑗
𝑙𝑜 (𝑡) =

{
 
 

 
 𝑒𝑥𝑝 {−

1

2
(
(𝑥𝑡,𝑗−𝜇𝑘,𝑗

𝑙 )

𝜎𝑘,𝑗
)

2

} , 𝑥𝑡,𝑗 ≻
(𝜇𝑘,𝑗

𝑙 +𝜇𝑘,𝑗
𝑟 )

2

𝑒𝑥𝑝 {−
1

2
(
(𝑥𝑡,𝑗−𝜇𝑘,𝑗

𝑟 )

𝜎𝑘,𝑗
)

2

} , 𝑥𝑡,𝑗 ≤
(𝜇𝑘,𝑗

𝑙 +𝜇𝑘,𝑗
𝑟 )

2

              (14) 

where 𝜑𝑘,𝑗
𝑢𝑝(𝑡)  denotes the upper membership function, 𝜑𝑘,𝑗

𝑙𝑜 (𝑡)  denotes the lower membership 

function, 𝜇𝑘,𝑗 ∈ [𝜇𝑘,𝑗
𝑙 , 𝜇𝑘,𝑗

𝑟 ]  denotes the center of the j-th characteristic of the k-th rule, and 𝜎⃗𝑘,𝑗 =

[𝜎𝑘,1, 𝜎𝑘,2, … , 𝜎𝑘,𝑛] denotes the width of the k-th rule. 

The third layer is the rule layer. This layer consists of K nodes, and each node corresponds to the 

output interval of each rule. The output of the upper layer performs a fuzzy operation through the 
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algebraic product of the membership function of the rule predecessor. Equations (15) and (16) can obtain 

the output interval of this layer, and the output is an interval of type I: 

𝐹𝑘
𝑙𝑜(𝑡) = ∏ 𝜑𝑘,𝑗

𝑙𝑜 (𝑡)𝑛
𝑗=1                               (15) 

𝐹𝑘
𝑢𝑝(𝑡) = ∏ 𝜑𝑘,𝑗

𝑢𝑝(𝑡)𝑛
𝑗=1                              (16) 

The interval can be expressed as: [𝐹𝑘
𝑙𝑜(𝑡), 𝐹𝑘

𝑢𝑝(𝑡)], 𝑘 = 1,2,… , 𝐾 

The fourth layer is the interval reduction layer consisting of K nodes, and each node decreases the 

interval type I fuzzy geometry to type I fuzzy number. Such decrease is implemented by Equation (17): 

𝐹𝑘(𝑡) = (1 − 𝛼𝑘)𝐹𝑘
𝑙𝑜(𝑡) + 𝛼𝑘𝐹𝑘

𝑢𝑝(𝑡), 𝑘 = 1,2, … , 𝐾                  (17) 

where 𝛼𝑘 represents the adaptive weight of the uncertainty of the k-th rule, the value range is [0, 1], 

and 𝐹𝑘(𝑡) represents the output value. 

The fifth layer is the loop layer. As the loop structure of the system, LSTM consists of 𝐾 ∗𝑚 nodes. 

Each node is a loop rule node, which creates an inner feedback hoop. When the step size is t, the output 

of the loop rule depends on the output of the current rule and the output value of the node at the previous 

instant, as shown in Equation (17) to Equation (22): 

𝑓𝑘,𝑞(𝑡) = 𝜎(𝑊𝑓𝑥
𝑘,𝑞
⋅ 𝐹𝑘(𝑡) +𝑊𝑓ℎ

𝑘,𝑞
⋅ ℎ𝑘,𝑞(𝑡 − 1) + 𝑏𝑓

𝑘,𝑞
)                 (18) 

𝑖𝑘,𝑞(𝑡) = 𝜎(𝑊𝑖𝑥
𝑘,𝑞
⋅ 𝐹𝑘(𝑡) +𝑊𝑖ℎ

𝑘,𝑞
⋅ ℎ𝑘,𝑞(𝑡 − 1) + 𝑏𝑖

𝑘,𝑞
)                 (19) 

𝑐𝑡𝑘,𝑞(𝑡) = 𝑡𝑎𝑛ℎ(𝑊𝑐𝑥
𝑘,𝑞
⋅ 𝐹𝑘(𝑡) +𝑊𝑐ℎ

𝑘,𝑞
⋅ ℎ𝑘,𝑞(𝑡 − 1) + 𝑏𝑐𝑡

𝑘,𝑞
)               (20) 

𝑜𝑘,𝑞(𝑡) = 𝜎(𝑊𝑜𝑥
𝑘,𝑞
⋅ 𝐹𝑘(𝑡) +𝑊𝑜ℎ

𝑘,𝑞
⋅ ℎ𝑘,𝑞(𝑡 − 1) + 𝑏𝑜

𝑘,𝑞
)                 (21) 

𝑐𝑘,𝑞(𝑡) = 𝑓𝑘,𝑞(𝑡) ∘ 𝑐𝑘,𝑞(𝑡 − 1) + 𝑖𝑘,𝑞(𝑡) ∘ 𝑐𝑡𝑘,𝑞(𝑡)                (22) 

ℎ𝑘,𝑞(𝑡) = 𝑜𝑘,𝑞(𝑡) ∘ 𝑡𝑎𝑛ℎ (𝑐𝑘,𝑞(𝑡))                       (23) 

where ℎ𝑘,𝑞(𝑡) denotes the output value of the loop rule, 𝐹𝑘(𝑡) denotes the output value of the current 

rule, ℎ𝑘,𝑞(𝑡 − 1) denotes the output value of the loop node at the previous time, [𝑊𝑓𝑥
𝑘,𝑞
,𝑊𝑓ℎ

𝑘,𝑞
, 𝑏𝑓
𝑘,𝑞
] 

denotes the weight matrix (WM) and offset term of the forget gate 𝑓𝑘,𝑞 of the k-th circulation rule, 

[𝑊𝑖𝑥
𝑘,𝑞
,𝑊𝑖ℎ

𝑘,𝑞
, 𝑏𝑖
𝑘,𝑞
] represents the WM and offset term of the input gate 𝑖𝑘,𝑞 of the k-th circulation rule, 

[𝑊𝑐𝑥
𝑘,𝑞
,𝑊𝑐ℎ

𝑘,𝑞
, 𝑏𝑐
𝑘,𝑞
] represents the WM and offset term of the unit state 𝑐𝑡𝑘,𝑞 of the k-th circulation 

rule; [𝑊𝑜𝑥
𝑘,𝑞
,𝑊𝑜ℎ

𝑘,𝑞
, 𝑏𝑜
𝑘,𝑞
] represents the WM and offset term of the output gate 𝑜𝑘,𝑞 of the k-th cycle 

rule. Meanwhile, in the above equations, 𝜎(𝑧) = 1 (1 + 𝑒−𝑧)⁄   and 𝑡𝑎𝑛ℎ(𝑧) =

(𝑒𝑧 − 𝑒−𝑧) (𝑒𝑧 + 𝑒−𝑧)⁄   are the sigmoid activation function and the tanh activation function, 

respectively. 

Finally, there is the output layer, where each node represents an output variable. The output variable 

of the calculation network is obtained through the weighted mean defuzzification operation. The output 

value can be expressed by Equation (24): 
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𝑦𝑞(𝑡) =
∑ 𝑤𝑘,𝑞ℎ𝑘,𝑞(𝑡)
𝐾
𝑘=1

∑ ℎ𝑘,𝑞(𝑡)
𝐾
𝑝=1

, 𝑞 = 1,2,… ,𝑚                       (24) 

where 𝑤𝑘,𝑞 represents the connection of the k-th cycle rule and the q-th output weight. 

4.2.  Model learning 

The established model structure is carried out mainly through offline and online learning. For offline 

learning, the network structure will be fixed after training, but due to the concept drift, the series data 

distribution will change with time. Therefore, offline learning is unsuitable for streaming data in 

practical applications. On the contrary, online learning can adapt the network structure according to the 

continuous changes in data and data characteristics, which is more appropriate for processing time-series 

data. Therefore, considering the problem of adaptive adjustment and reducing the computational burden 

as much as possible, the online learning method is adopted for training. The learning process of the 

model structure is shown in Figure 3: 
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Figure 3. Learning flowchart of the model structure. 

 

On this basis, parameter learning is also carried out. In the case of a single output, errors should be as 

few as possible, and the error function is shown in Equation (25): 

𝐸(𝑡) =
1

2
∑ [𝑦𝑞

𝑑(𝑡) − 𝑦𝑞(𝑡)]𝑞
2
                            (25) 

where 𝑦𝑞
𝑑(𝑡) represents the q-th actual output value of the t-th sample and 𝑦𝑞(𝑡) represents the q-th 

predicted output value of the t-th sample. In the network, updating the output value in the network 
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structure is also necessary before calculating the predicted output value. Therefore, the subsequent 

parameter update can be achieved by the following equation: 

𝑤𝑘,𝑞(𝑡 + 1) = 𝑤𝑘,𝑞(𝑡) − 𝜉
∂𝐸(𝑡)

∂𝑤𝑘,𝑞
                          (26) 

where: 𝜉 represents the learning rate. 

The gradient corresponding to the network weights between the fifth and sixth layers can be expressed 

by Equation (27): 

∂𝐸(𝑡)

∂𝑤𝑘,𝑞
=

∂𝐸(𝑡)

∂𝑦𝑞(𝑡)

∂𝑦𝑞(𝑡)

∂𝑤𝑘,𝑞
= (𝑦𝑞

𝑑(𝑡) − 𝑦𝑞(𝑡)) ⋅ ℎ𝑘,𝑞(𝑡)                   (27) 

where 𝛿𝑘,𝑞 represents the error term at time t. Therefore, the error term corresponding to each layer in 

the system can be expressed by Equation (28) to Equation (31): 

 𝛿𝑜
𝑘,𝑞

=
∂𝐸(𝑡)

∂𝑛𝑒𝑡𝑜
𝑘,𝑞(𝑡)

                                  (28) 

𝛿𝑓
𝑘,𝑞

=
∂𝐸(𝑡)

∂𝑛𝑒𝑡
𝑓
𝑘,𝑞(𝑡)

                                 (29) 

𝛿𝑖
𝑘,𝑞

=
∂𝐸(𝑡)

∂𝑛𝑒𝑡
𝑖
𝑘,𝑞(𝑡)

                                (30) 

𝛿𝑐𝑡
𝑘,𝑞

=
∂𝐸(𝑡)

∂𝑛𝑒𝑡𝑐𝑡
𝑘,𝑞(𝑡)

                                 (31) 

Therefore, the derivation of the error term passed to any time T can be expressed by Equation (32): 

𝛿𝑘,𝑞(𝑇) = ∏ 𝛿𝑜
𝑘,𝑞(𝑗)𝑊𝑜ℎ

𝑘,𝑞𝑡−1
𝑗=𝑇 + 𝛿𝑓

𝑘,𝑞(𝑗)𝑊𝑓ℎ
𝑘,𝑞
+ 𝛿𝑖

𝑘,𝑞(𝑗)𝑊𝑖ℎ
𝑘,𝑞
+ 𝛿𝑐𝑡

𝑘,𝑞(𝑗)𝑊𝑐𝑡
𝑘,𝑞

         (32) 

4.3.  Particle swarm optimized Quantum Echo State Network (QESN) 

In QESN, the neurons in different dynamic storage layers are qubit neurons; therefore, the model 

consists of the output, quantum, and output layers. The data input by the model will change from the 

natural state to the QS when passing through the input layer. The input value at this time can be expressed 

by Equation (33): 

𝑧𝑐 = 𝑓 (
𝜋

2
⋅ 𝑥𝑐 + 𝜃𝑐)                                 (33) 

where 𝑥𝑐  represents the input variable, f represents the mapping relationship; furthermore, the real 

number is converted into a QS, and 𝜃𝑐 represents the phase parameter, which will be primed before 

training. 

When using particle swarm to optimize QESN, it is mainly to find the best value of 𝛿. The optimized 

model is shown in Figure 4: 
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Figure 4. Process of particle swarm optimization. 

In the figure above, the original particle position and velocity are set randomly. 

5. Results and Discussion 

Here, the Mackey-Glass time series is utilized as an example for analysis. The time-lag differential 

equation is used to generate a time series, as shown in Equation (34): 

𝑋(𝑡)

𝑑𝑡
=

𝑎𝑥(𝑡−𝜏)

1+𝑥𝛾
− 𝛽𝑥(𝑡)                             (34) 

where 𝑎 = 0.2, 𝛽 = 0.1, 𝛾 = 10 . If 𝑋(𝑡) = 0,𝑋(0) = 1.2, 𝜏 = 16 , the time series corresponding to 

1197 data will be obtained, as shown in Figure 5: 

 

 

Figure 5. The time series. 
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When processing the original series, the fuzzy time unit corresponding to the K line is T=2, and 598 

K lines are obtained, which are divided into 46 groups further, with 46 corresponding information 

particles. The 30 information particles are used as the training set, and the rest 16 are used as the test 

set. Therefore, the predicted results are shown in Figure 6: 
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(a)                                    (b) 

Figure 6. The prediction results. 

As shown in the above figure, Figure 6 (a) is the training set, and Figure 6 (b) is the test set. When 

making predictions, the range of the test set is narrower, and the prediction results are closer; therefore, 

the prediction accuracy rate is also higher. On this basis, the predictions of different methods are 

compared, and the results in Figure 7 are obtained: 
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Figure 7. The prediction results. 
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As shown in the above results, the proposed new self-evolution interval type II LSTM based on 

quantum computing can reduce the generalization error in MG time series prediction. Therefore, this 

method can make better predictions, improving the accuracy rate. 

In summary, the eit2FNN-LSTM method can realize single-point detection and be used for granular-

level prediction when combined with information particles, achieving long-term time series prediction. 

In the meantime, when the particle algorithm is used to optimize the QESN, it is found that the algorithm 

can effectively enhance the prediction accuracy rate of the model. 

6. Conclusion 

The LSTM network and FIS are fused. It is expected that the effective fusion of LSTM, quantum 

computing, and FIS can improve the ability of the prediction model to process fuzzy information and 

improve the prediction accuracy rate of nonlinear time series. However, only the Mackey-Glass hybrid 

time series is analyzed, which may be accidental. In the subsequent exploration, more time series will 

be predicted to validate the usefulness of the proposed model. Therefore, the FIS based on quantum 

computing and the new eit2FNN-LSTM can provide more ideas for the in-depth study of single-input 

value prediction, multi-input value prediction, and online detection series data in nonlinear time series 

prediction. 
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